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Non-Gaussian equilibrium in a long-range Hamiltonian system
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We study the dynamics of a system ofN classical spins with infinite-range interaction. We show that, if the
thermodynamic limit is taken before the infinite-time limit, the system does not relax to the Boltzmann-Gibbs
equilibrium, but exhibits different equilibrium properties, characterized by stable non-Gaussian velocity dis-
tributions, Lévy walks, and dynamical correlation in phase space.
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Though not always clearly stated, standard equilibri
thermodynamics@1–3# is valid only for sufficiently short-
range interactions. This is not the case, for example,
gravitational or unscreened Coulombian fields, or for s
tems with long-range microscopic memory and fractal str
tures in phase space. The increasing experimental evid
of dynamics and thermodynamics anomalies in turbul
plasmas@4# and fluids@5–7#, astrophysical systems@8–12#,
nuclei @13,14# and atomic clusters@15#, granular media@16#,
glasses@17,18#, and complex systems@19,20# found in the
last years, provide further motivation for a generalization
thermodynamics.

In this paper, we consider a simple model of classi
spins with infinite-range interactions@21–24#, and we show
that, if the thermodynamic limit is performed before the i
finite time limit, the system does not relax to the Boltzman
Gibbs ~BG! equilibrium, but exhibits different equilibrium
properties characterized by non-Gaussian velocity distr
tions, Lévy walks, dynamical correlation in phase space, a
the validity of the zeroth principle of thermodynamics. O
results show some consistency with the predictions of a g
eralized nonextensive thermodynamics recently propo
@25,26#. The Hamiltonian mean-field~HMF! model describes
a system ofN planar classical spins interacting through
infinite-range potential@21#. The Hamiltonian may be writ-
ten as

H5K1V5(
i 51

N pi
2

2
1

1

2N (
i , j 51

N

@12cos~u i2u j !#, ~1!

whereu i is the i th angle andpi the conjugate variable rep
resenting the angular momentum~or the rotational velocity
since unit mass is assumed!. The interaction is the same as
the ferromagneticX-Y model @2#, though the summation is
extended to all couples of spins and not restricted to fi
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neighbors. Following tradition, the coupling constant in t
potential is divided byN. This makesH only formally exten-
sive (V;N whenN→`) @25–28#, since the energy remain
nonadditive, i.e., the system cannot be trivially divided
two independent subsystems. The canonical analytical s
tion of the model predicts a second-order phase transi
from a low-energy ferromagnetic phase with magnetizat
M;1 (M is the modulus ofM5(1/N)( i 51

N mi , wheremi

5„cos(u i),sin(u i)…, to a high-energy one where the spins a
homogeneously oriented on the unit circle andM;0. The
caloric curve, i.e., the dependence of the energy densityU
5E/N on the temperatureT, is given by U5T/211/2(1
2M2) and shown in Fig. 1~a!. The critical point is at energy
densityUc50.75 corresponding to a critical temperatureTc
50.5 @21#. The dynamical behavior of HMF may be inve
tigated in the microcanonical ensemble by starting the s
tem with the so-called water bag initial conditions~WBIC!,
i.e., u i50 for all i (M51) and velocities uniformly distrib-
uted, and integrating numerically the equations of mot
@22#. As shown in Fig. 1~a!, microcanonical simulations ar
in general in good agreement with the canonical ensem
except for a region belowUc , where it has also been foun
a dynamics characterized by Le´vy walks, anomalous diffu-
sion @23#, and a negative specific heat@24#. Ensemble in-
equivalence and negative specific heat have also been fo
in self-gravitating systems@8#, nuclei, and atomic cluster
@13–15#, though in the present paper, such anomalies eme
as dynamical features@29,30#. In order to understand bette
this disagreement, we focus on a particular energy va
namelyU50.69, and we follow the time evolution of tem
perature, magnetization, and velocity distributions.

In Fig. 1~b!, we report the time evolution of 2^K&/N, a
quantity that, evaluated at equilibrium, is expected to co
cide with the temperature (^•& denotes time averages!. The
system is started with WBIC and rapidly reaches a me
stable or quasistationary state~QSS! which does not coincide
with the canonical prediction. In fact, after a short transie
time, 2̂ K&/N shows a plateau corresponding to
N-dependent temperatureTQSS(N) ~and MQSS;0) lower
than the canonical temperature. This metastable state ne
long time to relax to the canonical equilibrium state wi
temperatureTcan50.476 and magnetizationMcan50.307.
©2001 The American Physical Society34-1
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LATORA, RAPISARDA, AND TSALLIS PHYSICAL REVIEW E64 056134
FIG. 1. ~a! Caloric curve: microcanonical numerical results forN510 000,100 000 are compared with equilibrium theory in the canon
ensemble. The dashed vertical line indicates the critical energy. Water bag initial conditions~WBIC! are used in the numerical simulation
Temperature is computed fromT52^K&/N, where^•& denotes time averages after a short transient timet05102 ~not reported here!. The
time step used was 0.2@22#. ~b! Microcanonical time evolution of 2̂K&/N, for the energy densityU50.69 and different sizes. Each curv
is an average over typically 10021000 events. The dot-dashed line represents the canonical temperatureTcan50.476. The quantity 2̂K&/N,
which starts from an initial value 1.38 (V50 andK5UN in WBIC!, does not relax immediately to the canonical temperature. The sy
lives in a quasistationary state~QSS! with a plateautemperature TQSS(N) smaller than the expected value 0.476. The lifetime of the Q
increases withN and the value of their temperature converges, asN increases, to the temperatureT`50.38, reported as a dashed lin
Log-log plot of the QSS lifetime~c! andTQSS(N)2T` ~d! are reported as a function of the sizeN. The lifetime diverges linearly withN, and
TQSS(N) converges toT`50.38 asN21/3 ~see fit shown as a dashed line!. Note that from the caloric curve one getsM25T1122U5T
20.38. Therefore, from the behavior reported in panel~d!, beingT`50.38, one getsMQSS5N21/6. Results are similar when we conside
double water bag initial conditions~DWBIC!, i.e., u i50 for all i and velocities uniformly distributed in (2p2 ,2p1) and (p1 ,p2). In the
figure, we report the casep150.8, p251.51.
th
o

e
is

ne
n

pr

e
ns
ax
o

tu
s
ic

ca

t the
of

the
We
by
le

on

a
for

e

ity

tem
The duration of the plateau increases with the size of
system: in particular, we have checked that the lifetime
QSS has a linear dependence onN, see Fig. 1~c!. Therefore,
the two limits t→` and N→` do not commute and if the
thermodynamic limit is performed before the infinite tim
limit, the system does not relax to the BG equilibrium. Th
has been conjectured to be an ubiquitous feature in no
tensive systems@25#, but it has also been found for spi
glasses @17#. When N increasesTQSS(N) tends to T`

50.380, a value obtained analytically as the metastable
longation ~at energies belowUc50.75) of the high-energy
solution (M50). We have also found that@TQSS(N)2T`#
}N21/3 and MQSS}N21/6, see Fig. 1~d!. At the same time,
we have checked that increasing the size, the larg
Lyapunov exponent for the QSS tends to zero. In this se
mixing is negligible and one expects anomalies in the rel
ation process@31#. The fact thatTQSSconverges to a nonzer
value of temperature forN→` means that, whenN is mac-
roscopically large, systems may share the same tempera
though this equilibrium is not the familiar one. All thi
amounts to say that the zeroth principle of thermodynam
is stronger than what one might think through BG statisti
05613
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mechanics, since it is true even when the system is not a
usual BG equilibrium. We have checked the robustness
the above results by changing the level of accuracy of
numerical integration and by adding small perturbations.
also verified that the QSS has a finite basin of attraction,
adopting different initial conditions, as for example, doub
water bag initial conditions~DWBIC!. In Fig. 2, we focus on
the velocity probability distribution functions~PDF’s!. The
initial velocity PDF’s ~WBIC or DWBIC!, reported in Fig.
2~a! , quickly acquire and maintain during the entire durati
of the metastable state anon-Gaussian shape, see Figs. 2~b!
and 2~c!. The velocity PDF of the QSS is wider than
Gaussian for small velocities, but shows a faster decrease
p.1.2. The enhancement for velocities aroundp;1 is con-
sistent with the anomalous diffusion and the Le´vy walks
~with average velocityp;1) observed in the QSS regim
@23#. The following rapid decrease forp.1.2 is due to con-
servation of total energy . The stability of the QSS veloc
PDF may be explained by the fact that, forN→`, MQSS
→0 and thus the force on the spins tends to zero withN,
beingFi52Mx sinu i1M y cosu i . Of course, for finiteN, we
have always a small random force, which makes the sys
4-2
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FIG. 2. Time evolution of the velocity probability distribution function~PDF! for U50.69 and different sizes of the system.~a! At time
t50 we start with a single~WBIC! or a double~DWBIC! water bag velocity PDF.~b! In the transient regime where 2^K&/N shows a plateau
corresponding toTQSS(N) and the system lives in a quasistationary state~QSS!, the velocity PDF’s do not change in time and are ve
different from the Gaussian canonical equilibrium distribution~full curve!. The PDF’s at timet51200 forN51000,10 000,100 000 show
convergence towards a non-Gaussian distribution that can be fitted by means of a power-law analytical curve~dashed curve! consistent with
the generalized nonextensive thermodynamics@25# proposed by Tsallis and characterized byq57 andT50.38, see text. The theoretica
curve has been truncated with a sharp cutoff in order to have total probability equal to one, see text.~c! The same curves shown in~b! at
t51200 are reported in linear scale.~d! We show the difference,D, between the numerical results and the theoretical curve, as a fun
of N for the four values ofp indicated by arrows in panel~c!. ~e! We show the numerical PDF’s att5500 000 forN5500 and 1000. We
get an excellent agreement with the Gaussian canonical equilibrium distribution at temperatureT50.476.
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eventually evolve into the usual Maxwell-Boltzmann dist
bution after some time. We show this for small systemsN
5500,1000) at timet5500 000 in Fig. 2~e!. When this hap-
pens, Le´vy walks disappear and anomalous diffusion leav
place to Brownian diffusion@23#. A possible frame to repro
duce the non-Gaussian PDF in Fig. 2~b! could be the nonex-
tensive statistical mechanics recently proposed@25,26# with
the entropic indexq5” 1. This formalism provides, for the
canonical ensemble, aq-dependent power-law distribution i
the variablespi , u i . This distribution has to be integrate
over all u i and all but onepi in order to obtain the one
momentum PDF,Pq(p), to be compared with the numerica
one, Pnum(p), obtained by considering, within the prese
molecular dynamical frame, increasingly largeN-sized sub-
systems of an increasingly largeM system. Within theM
@N@1 numerical limit, we expect to go from the microc
nonical ensemble to the canonical one~the cutoff is then
expected to gradually disappear as indeed occurs in the u
short-range Hamiltonians!, thus justifying the comparison
betweenPq(p) and Pnum(p). The enormous complexity o
this procedure made us turn instead to a naive, but tracta
comparison, namely that of our present numerical res
with the following one-free-particle PDF@25# P(p)5@1
2(1/2T)(12q)p2#1/(12q), which recovers the Maxwell-
Boltzmann distribution forq51. This formula has been re
05613
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cently used to describe successfully turbulent Couette-Ta
flow @5# and non-Gaussian PDF’s related to anomalous
fusion ofHydra cells in cellular aggregates@19#. In our case,
the best fit is obtained by a curve withq57, T50.38 as
shown in Figs. 2~b! and 2~c!. The agreement between nu
merical results and theoretical curve improves with the s
of the system. A finite-size scaling confirming the validity
the fit is reported in panel~d!, whereD5Pth2Pnum, the
difference between the numerical results and the theore
curve forq57, is shown to go to zero as a power ofN ~for
four values ofp). Sinceq.3, the theoretical curve does no
have a finite integral, and therefore, it needs to be trunca
with a sharp cutoff to make the total probability equal to on
It is however clear that the fitting valueq57 is only an
effective nonextensive entropic index. Similar non-Gauss
PDF’s have also been found in turbulence and granular m
ter experiments@5,16#, though this is the first evidence in
Hamiltonian system. In Fig. 3, we verify, through the calc
lation of the fractal dimensionD2 @32#, that a dynamical
correlation emerges in them space before the final arrival t
a quasiuniform distribution. During intermediate times som
filamentary structures appear, a similar feature has rece
been found also in self-gravitating systems@11#, which might
be closely related to the plateaus observed in Fig. 1~b!. We
learn from the curves in Fig. 3~c! that, since they do no
4-3
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FIG. 3. Correlation inm space.~a! We show them space, i.e., the angle and momenta of theN particles, forU50.69 andN510 000 at
different time scales, starting from WBIC. Although the initial configuration is uniform, structures emerge and persist for a very lo
before dissolving again at equilibrium. A way to measure these correlations is by means of the correlation integral@32# C(r )
5(1/N2)( i , j

N Q(r 2di , j ) wheredi , j is the Euclidean distance between two points of them space. In general,C(r )5r D2, whereD2 is the
correlation fractal dimension.~b! By reporting the logarithm ofC(r ) vs the logarithm ofr, a linear behavior over several decades is fou
The fractal dimension thus extracted is reported in~c! vs time~an average over 50 events is considered!. In the same time scale where w
find the QSS, the correlation dimension is inbetween one and two. The particles are fully spread in them space only at equilibrium. As time
increases,D2 grows continuously from one to two.
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sensibly depend onN, the possible connection does not co
cern the entirem space, but perhaps only the small stic
regions between the ‘‘chaotic sea’’ and the quasiorbits@33#.

Metastable states are ubiquitous in nature. Their full
derstanding is, however, far from trivial. They basically co
respond to local, instead of global, minima of the relev
thermodynamic energy. The two types of minima are se
rated by activation barriers that at the thermodynamic lim
may be low, high, or infinite, all of them presumably occu
ring in nature. The last case yields of course to quite dra
consequences. Moreover, the local minimum may eit
make the system to live in a smooth part of thea priori
accessible phase space, or it may force it to live in a g
metrically more complex~e.g., multifractal! part of the phase
space. The richness of such a situation is what makes
study of glasses, nuclei, atomic clusters, self-gravitating
other complex systems interesting. It is natural to expect
such systems that the infinite size and infinite time limits
not interchangeable. What has emerged quite clearly he
that thermodynamically large systems with long-range in
05613
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actions belong to this very rich class. We have verified t
the usual attributes of thermal equilibrium:zeroth principle
at finite temperatures, robustness associated with a finite
sin of attraction in the space of the initial conditions, stab
distribution of velocities, are satisfied, but theysystemati-
cally differ from whatBG statistical mechanics have mad
familiar to us for the last 130 years. Our findings indica
some consistency with the predictions of nonextensive sta
tical mechanics@25#, though a firm and unambiguous con
nection remains a challenge for future studies. In particu
we believe all these features not to be exclusive of
present HMF model. Similar scenarios are expected for s
tems with, for example, two-body interactions decaying li
r 2a for 0<a<ac , whereac is equal, for classical systems
to the space dimension@27,28#.
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